10 research outputs found

    The 2018 Kerala floods: a climate change perspective

    Get PDF
    In August 2018, the Indian state of Kerala received an extended period of very heavy rainfall as a result of a low-pressure system near the beginning of the month being followed several days later by a monsoon depression. The resulting floods killed over 400 people and displaced a million more. Here, a high resolution setup (4 km) of the Weather Research and Forecasting (WRF) model is used in conjunction with a hydrological model (WRF-Hydro, run at 125 m resolution) to explore the circumstances that caused the floods. In addition to a control experiment, two additional experiments are performed by perturbing the boundary conditions to simulate the event in pre-industrial and RCP8.5 background climates. Modelled rainfall closely matched observations over the study period, and it is found that this would this would have been about 18% heavier in the pre-industrial due to recent weakening of monsoon low-pressure systems, but would be 36% heavier in an RCP8.5 climate due to moistening of the tropical troposphere. Modelled river streamflow responds accordingly: it is shown the six major reservoirs that serve the state would have needed to have 34% more capacity to handle the heavy rainfall, and 43% had the deluge been amplified by an RCP8.5 climate. It is further shown that this future climate would have significantly extended the southern boundary of the flooding. Thus it is concluded that while climate change to date may well have mitigated the impacts of the flooding, future climate change would likely exacerbate them

    The role of mid‐tropospheric moistening and land‐surface wetting in the progression of the 2016 Indian monsoon

    Get PDF
    Accurately predicting the Indian monsoon is limited by inadequate understanding of the underlying processes, which feed into systematic model biases. Here we aim to understand the dynamic and thermodynamic features associated with the progression of the monsoon, using 2016 as a representative year, with the help of convection-permitting simulations of the Met Office Unified Model. Simulations are carried out in a 4 km resolution limited-area model, nested within a coarser global model. Two major processes thought to influence the northwestward progression of the monsoon are: (a) the interaction between the low-level monsoon flow and a mid-tropospheric dry-air intrusion from the northwest, and (b) land–atmosphere interactions. We find that the 4 km limited-area model simulates the mid-tropospheric moistening that erodes the northwesterly dry intrusion, pushing the northern limit of moist convection northwestwards. The surface soil moisture also plays a major role at the leading edge of the monsoon progression. The heavy rains associated with the local onset wet the soil, reducing the sensitivity of surface fluxes to soil moisture and weakening the land influence on further progression of monsoon rains. The 4 km model is tested with an alternative land-surface configuration to explore its sensitivity to land-surface processes. We find that the choice of soil and vegetation ancillaries affects the time-scales of soil moisture–precipitation feedback and the timing of diurnal convection, thereby affecting the local onset. We further compare these simulations with a parametrized convection run at 17 km resolution to isolate the effects of convective parametrization and resolution. The model with explicit convection better simulates the dynamic and thermodynamic features associated with the progression of the monsoon

    The dynamic and thermodynamic structure of the monsoon over southern India: new observations from the INCOMPASS IOP

    Get PDF
    Some of the highest summer monsoon rainfall in South Asia falls on the windward slopes of the Western Ghats mountains on India’s west coast and offshore over the eastern Arabian Sea. Understanding of the processes determining the spatial distribution and temporal variability of this region remains incomplete. In this paper, new Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS) aircraft and ground-based measurements of the summer monsoon over the Western Ghats and upstream of them are presented and placed within the context of remote sensing observations and reanalysis. The transition from widespread rainfall over the eastern Arabian Sea to rainfall over the Western Ghats is documented in high spatial and temporal resolution. Heavy rainfall offshore during the campaign was associated primarily with mid-tropospheric humidity, secondarily with sea surface temperature, and only weakly with orographic blocking. A mid-tropospheric dry intrusion suppressed deep convection offshore in the latter half of the campaign, allowing the build-up of low-level humidity in the onshore flow and enhancing rainfall over the mountains. Rainfall on the lee side of the Western Ghats occurred during the latter half of the campaign in association with enhanced mesoscale easterly upslope flow. Diurnal cycles in rainfall offshore (maximum in the morning) and on the mountains (maximum in the afternoon) were observed. Considerable zonal and temporal variability was seen in the offshore boundary layer, suggesting the presence of convective downdrafts and cold pools. Persistent drying of the subcloud mixed layer several hundred kilometres off the coast was observed, suggesting strong mixing between the boundary layer and the free troposphere. These observations provide quantitative targets to test models and suggest hypotheses on the physical mechanisms determining the distribution and variability in rainfall in the Western Ghats region

    Climatic risks and impacts in South Asia: extremes of water scarcity and excess

    Get PDF
    This paper reviews the current knowledge of climatic risks and impacts in South Asia associated with anthropogenic warming levels of 1.5°C to 4°C above pre-industrial values in the 21st century. It is based on the World Bank Report “Turn Down the Heat, Climate Extremes, Regional Impacts and the Case for Resilience” (2013). Many of the climate change impacts in the region, which appear quite severe even with relatively modest warming of 1.5–2°C, pose significant hazards to development. For example, increased monsoon variability and loss or glacial meltwater will likely confront populations with ongoing and multiple challenges. The result is a significant risk to stable and reliable water resources for the region, with increases in peak flows potentially causing floods and dry season flow reductions threatening agriculture. Irrespective of the anticipated economic development and growth, climate projections indicate that large parts of South Asia’s growing population and especially the poor are likely to remain highly vulnerable to climate change

    Interaction of convective organisation with monsoon precipitation, atmosphere, surface and sea: the 2016 INCOMPASS field campaign in India

    Get PDF
    The INCOMPASS field campaign combines airborne and ground measurements of the 2016 Indian monsoon, towards the ultimate goal of better predicting monsoon rainfall. The monsoon supplies the majority of water in South Asia, but forecasting from days to the season ahead is limited by large, rapidly developing errors in model parametrizations. The lack of detailed observations prevents thorough understanding of the monsoon circulation and its interaction with the land surface: a process governed by boundary-layer and convective-cloud dynamics. INCOMPASS used the UK Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft for the first project of this scale in India, to accrue almost 100 hours of observations in June and July 2016. Flights from Lucknow in the northern plains sampled the dramatic contrast in surface and boundary layer structures between dry desert air in the west and the humid environment over the northern Bay of Bengal. These flights were repeated in pre-monsoon and monsoon conditions. Flights from a second base at Bengaluru in southern India measured atmospheric contrasts from the Arabian Sea, over the Western Ghats mountains, to the rain shadow of southeast India and the south Bay of Bengal. Flight planning was aided by forecasts from bespoke 4km convection-permitting limited-area models at the Met Office and India's NCMRWF. On the ground, INCOMPASS installed eddy-covariance flux towers on a range of surface types, to provide detailed measurements of surface fluxes and their modulation by diurnal and seasonal cycles. These data will be used to better quantify the impacts of the atmosphere on the land surface, and vice versa. INCOMPASS also installed ground instrumentation supersites at Kanpur and Bhubaneswar. Here we motivate and describe the INCOMPASS field campaign. We use examples from two flights to illustrate contrasts in atmospheric structure, in particular the retreating mid-level dry intrusion during the monsoon onset

    Enhanced future variability during India's rainy season

    No full text
    The Indian summer monsoon shapes the livelihood of a large share of the world’s population. About 80% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall, the day-to-day variability is crucial for the risk of flooding, national water supply, and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the AR-5 of the Intergovernmental Panel on Climate Change, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. The relative increase by the period 2071–2100 with respect to the control period 1871–1900 ranges from 13% to 50% under the strongest scenario (Representative Concentration Pathways, RCP-8.5), in the 10 models with the most realistic monsoon climatology; and 13% to 85% when all the 20 models are considered. The spread across models reduces when variability increase per degree of global warming is considered, which is independent of the scenario in most models, and is 8% +/-4%/K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change

    Intraseasonal oscillations of the Silk Road pattern lead to predictability in East Asian precipitation patterns and the Mei Yu front

    No full text
    The Silk Road pattern (SRP) is analysed on intraseasonal timescales over summer using empirical orthogonal functions (EOFs) of the meridional wind at 200 hPa. The first two principal components explain almost equal amounts of variance, hence both are required to represent the intraseasonal SRP. The associated spatial loadings are 90◦ out of phase with each other, providing evidence that propagating oscillations are a natural mode of variability of the intraseasonal SRP. This is supported by Hovmöller diagrams of the meridional wind at 200 hPa and by phase diagrams of the first two EOFs, which both show a predominantly eastward-propagating oscillation. The oscillations are identified as plausibly being Rossby waves by means of waveguide theory. The subtropical westerly jet and East Asian rainfall patterns are found to be dependent on the phase of the oscillation: wet anomalies occur to the east of troughs in the jet, which are also regions where local jet entrances cause upper-level divergence via an ageostrophic circulation. Dry anomalies occur to the west of troughs, which are regions of upper-level convergence. The time-delayed location of the summer Mei Yu front relative to its climatology is dependent on the phase of the oscillation: when there is an upper-level trough located over the Korean Peninsula, the Mei Yu front is likely to be located further north than normal 3–8 days later, before returning to its climatological position. This suggests that the phase of the intraseasonal SRP acts as a potential source of predictability of the location of the Mei Yu front, which might allow for better prediction of the associated rains

    Persistent post-stroke dysphagia treated with cricopharyngeal myotomy

    No full text
    Post-stroke dysphagia is a common problem after stroke. About 8-13% patients have persistent dysphagia and are unable to return to pre-stroke diet even after 6 months of stroke. Use of percutaneous endoscopic gastrostomy (PEG) may be required in these patients, which may be psychologically unacceptable and impair the quality of life. In those with cricopharyngeal dysfunction leading on to refractory post-stroke dysphagia, cricopharyngeal myotomy and injection of botulinum toxin are the treatment options. We present a case of vertebrobasilar stroke who had persistent dysphagia due to cricopharyngeal dysfunction with good recovery of swallowing function following cricopharyngeal myotomy 1.5 years after the stroke

    Turn down the heat: climate extremes, regional impacts, and the case for resilience

    No full text
    This report focuses on the risks of climate change to development in Sub-Saharan Africa, South East Asia and South Asia. Building on the 2012 report, Turn Down the Heat: Why a 4°C Warmer World Must be Avoided, this new scientific analysis examines the likely impacts of present day, 2°C and 4°C warming on agricultural production, water resources, and coastal vulnerability for affected populations. It finds many significant climate and development impacts are already being felt in some regions, and in some cases multiple threats of increasing extreme heat waves, sea level rise, more severe storms, droughts and floods are expected to have further severe negative implications for the poorest. Climate related extreme events could push households below the poverty trap threshold. High temperature extremes appear likely to affect yields of rice, wheat, maize and other important crops, adversely affecting food security. Promoting economic growth and the eradication of poverty and inequality will thus be an increasingly challenging task under future climate change. Immediate steps are needed to help countries adapt to the risks already locked in at current levels of 0.8°C warming, but with ambitious global action to drastically reduce greenhouse gas emissions, many of the worst projected climate impacts could still be avoided by holding warming below 2°C
    corecore